博客
关于我
Codeforces Round #374 (Div. 2) C. Journey(拓扑+DP)(DAG上跑DP)
阅读量:389 次
发布时间:2019-03-05

本文共 628 字,大约阅读时间需要 2 分钟。

代码思路:

  • 动态规划(DP)与拓扑排序结合的最短路径算法

    • **dp[i][j]**表示前i个点中经过j个点的最小花费。
    • 使用了双端队列(队列)进行拓扑排序来处理有向无环图(DAG),确保每个节点在处理时其前置节点已经处理完毕。
    • 在拓扑排序过程中,逐步更新dp数组,并记录前驱节点(pre数组),以便后续路径追溯。
  • 图结构与输入处理

    • 图的节点为1到n,边由输入参数x、y、z表示,边的权重为z。
    • 使用邻接表结构存储图的边信息,每个节点存储其相邻节点及权重。
    • ru数组用于跟踪节点的可访问次数,用于拓扑排序。
  • 递归路径追溯

    • dfs函数从目标节点n和最终答案ans开始,递归追溯路径,输出路径结果。
    • pre数组记录每个dp[i][j]的前驱节点,帮助重建路径。
  • 主函数逻辑

    • 读取输入参数并初始化各变量。
    • 调用tuopu函数进行图的预处理和dp数组的更新。
    • 计算并输出满足条件的最大的i值,即从1到n中最大的i使得dp[n][i] <= T。
    • 调用递归函数输出路径。
  • 优化点:

    • 代码结构:尽量减少不必要的代码,例如注释、空行等,以提高可读性。
    • 变量命名:使用更具描述性的命名,帮助理解代码功能。
    • 函数模块化:将代码分为多个函数,提升代码的可维护性和复用性。

    总结:

    该代码实现了一种结合动态规划和拓扑排序的最短路径算法,适用于有向无环图(DAG)。通过预处理和递归路径追溯,能够高效地找到从起点到终点的最优路径。代码结构清晰,逻辑严谨,适合处理类似的问题。

    转载地址:http://jeewz.baihongyu.com/

    你可能感兴趣的文章
    Numpy 入门
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>